A Model Assessment of the Occurrence and Reactivity of the Nitrating/Nitrosating Agent Nitrogen Dioxide (•NO2) in Sunlit Natural Waters

Author:

Vione DavideORCID

Abstract

Nitrogen dioxide (•NO2) is produced in sunlit natural surface waters by the direct photolysis of nitrate, together with •OH, and upon the oxidation of nitrite by •OH itself. •NO2 is mainly scavenged by dissolved organic matter, and here, it is shown that •NO2 levels in sunlit surface waters are enhanced by high concentrations of nitrate and nitrite, and depressed by high values of the dissolved organic carbon. The dimer of nitrogen dioxide (N2O4) is also formed in the pathway of •NO2 hydrolysis, but with a very low concentration, i.e., several orders of magnitude below •NO2, and even below •OH. Therefore, at most, N2O4 would only be involved in the transformation (nitration/nitrosation) of electron-poor compounds, which would not react with •NO2. Although it is known that nitrite oxidation by CO3•− in high-alkalinity surface waters gives a minor-to-negligible contribution to •NO2 formation, it is shown here that NO2− oxidation by Br2•− can be a significant source of •NO2 in saline waters (saltwater, brackish waters, seawater, and brines), which offsets the scavenging of •OH by bromide. As an example, the anti-oxidant tripeptide glutathione undergoes nitrosation by •NO2 preferentially in saltwater, thanks to the inhibition of the degradation of glutathione itself by •OH, which is scavenged by bromide in saltwater. The enhancement of •NO2 reactions in saltwater could explain the literature findings, that several phenolic nitroderivatives are formed in shallow (i.e., thoroughly sunlit) and brackish lagoons in the Rhône river delta (S. France), and that the laboratory irradiation of phenol-spiked seawater yields nitrophenols in a significant amount.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3