Study of Tetrahydroxylated Anthraquinones—Potential Tool to Assess Degradation of Anthocyanins Rich Food

Author:

Kučera LukášORCID,Kurka Ondřej,Golec Martin,Bednář PetrORCID

Abstract

Degradation of anthocyanins involves scission of the flavonoid skeleton yielding 2,4,6-trihydroxybenzaldehyde (phloroglucinaldehyde, PGA) and a phenolic acid. However, the process is not finished with the formation of PGA, as the consequent condensation of two PGA molecules providing colored hydroxylated anthraquinones was observed for the first time. This process was studied using a combination of preparative column chromatography, nuclear magnetic resonance, liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS2), and quantum calculations using density functional theory. 1,3,5,7-tetrahydroxyanthraquinone (anthrachrysone) and its isomers were found to rise during heating (95 °C) in a buffered PGA model solution (phosphate buffer, pH 7). These compounds were detected in heated red wine after an increase of its pH value. The concentration of the identified anthrachrysone in the red wine reached 0.01 mg·L−1. Presence of those compounds could therefore indicate involvement of certain steps in the processing of plant materials rich in anthocyanins (e.g., utilization of a higher temperature and/or reduction of acidity) or long-term transformation of anthocyanins (potentially, for instance, in archaeological findings such as wine or fruit residues). Additionally, measurement of wine–soil suspensions proved an increase of their pH to the values suitable for anthocyanin cleavage (neutral to slightly alkaline; reached using soil from archaeologically well-known Bull Rock Cave). Although not found in artificially prepared samples (imitations) or authentic materials so far, according to our results the above mentioned conditions are suitable for the formation of tetrahydroxylated anthraquinone derivatives and their monitoring would be beneficial.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3