Synthesis of Glycerol Carbonate from Ethylene Carbonate Using Zinc Stearate as a Catalyst: Operating Conditions and Kinetic Modeling

Author:

Alvarez Serafini Mariana1,Gonzalez-Miranda David2ORCID,Tonetto Gabriela1,Garcia-Ochoa Félix2,Ladero Miguel2ORCID

Affiliation:

1. Department of Chemical Engineering, Universidad Nacional del Sur (UNS) and Chemical Engineering Pilot Plant—PLAPIQUI (UNS-CONICET), Bahía Blanca B8000, Argentina

2. FQPIMA Group, Materials and Chemical Engineering Department, Chemical Science School, Complutense University of Madrid, 28040 Madrid, Spain

Abstract

With the advent of biodiesel as a substitute/additive for diesel, the production of glycerol has experienced an increase, as it is an unavoidable byproduct of the biodiesel process; therefore, novel products and processes based on this triol are being very actively researched. Glycerol carbonate emerges as an advanced humectant from glycerol and a monomer for diverse polycarbonates. Its production in high yields and amounts can be achieved through the solventless transcarbonation of glycerol with other organic carbonates driven by alkaline catalysts, standing out amongst the cyclic carbonates due to its reactivity. Here, we have studied the main operational variables that affect the transcarbonation reaction of glycerol and ethylene carbonate catalyzed by zinc stearate: catalyst concentration, reagent molar ratio, and temperature. Subsequently, an appropriate kinetic model was fitted to all data obtained at 80 °C and several catalyst concentrations as well as reagent molar ratios. Finally, the selected kinetic model was extended and validated by fitting it to data obtained at several temperatures, finding that the activation energy of this reaction with this catalyst is around 69.2 kJ·mol−1. The kinetic model suggests that the reaction is bimolecular and elemental and that the process is interfacial in essence, with the catalyst dispersed in a narrow space between polar (glycerol) and nonpolar (ethylene carbonate) phases.

Funder

Spanish Research Agency

CYTED

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3