Physical Properties and Release Profiles of Chitosan Mixture Films Containing Salicin, Glycerin and Hyaluronic Acid

Author:

Lewandowska Katarzyna1ORCID,Sionkowska Alina1ORCID,Kurzawa Marzanna2

Affiliation:

1. Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland

2. Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland

Abstract

Chitosan (CS) has gained considerable attention due to its distinctive properties and its broad spectrum of potential applications, spanning cosmetics, pharmaceuticals, and biomedical uses. In this study, we characterized thin films comprising chitosan mixtures containing salicin (SAL) and glycerin (GLY), both with and without hyaluronic acid (HA) as active ingredients. Characterization was achieved through release studies of SAL, infrared spectroscopy, microscopy techniques (AFM and SEM), and thermogravimetric analysis (TGA). CS/GLY/SAL and CS/GLY/SAL/HA mixture films were fabricated using the solvent evaporation technique. We probed interactions between the components in the chitosan mixtures via infrared analysis. The concentration of released salicin was monitored at various time intervals in a phosphate buffer (PBS) at pH 5.5 using HPLC. The linear regression analysis for the calibration graph showed a good linear relationship (R2 = 0.9996) in the working concentration range of 5–205 mg/dm3. Notably, the release of SAL reached its peak after 20 min. Furthermore, the introduction of HA caused changes in the films’ morphology, but their roughness remained largely unchanged. The results obtained were compared, indicating that the release of SAL in the CS mixture films is sufficient for diverse applications, including wound-healing materials and cosmetic beauty masks.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3