Ecofriendly Synthesis of Magnetic Composites Loaded on Rice Husks for Acid Blue 25 Decontamination: Adsorption Kinetics, Thermodynamics, and Isotherms

Author:

Batool Fozia1ORCID,Kanwal Samia12ORCID,Kanwal Hafsa1,Noreen Sobia1ORCID,Hodhod Mohamed S.3ORCID,Mustaqeem Muhammad1,Sharif Gulnaz4,Naeem Hafiza Komal5,Zahid Javeria1,Gaafar Abdel-Rhman Z.6ORCID

Affiliation:

1. Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan

2. College of Biological Sciences and Medical Engineering, Donghua University, 2999 North Ren Min Road, Shanghai 201620, China

3. Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City 12566, Egypt

4. Department of Chemistry, Government Graduate College for Women, Mandi Bahauddin 50400, Pakistan

5. Department of Botany, University of Agriculture, Faisalabad 38000, Pakistan

6. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia

Abstract

Addressing the growing need for methods for ecofriendly dye removal from aqueous media, this study explores the potential of rice husks coated with iron oxide (Fe2O3@RH composites) for efficient Acid Blue 25 decontamination. The adsorption potential of Acid Blue 25 is analyzed using raw rice husks and Fe2O3 nanoparticles in the literature, but their enhanced removal capacity by means of Fe2O3@RH composites is reported for the first time in this study. Fe2O3@RH composites were analyzed by using analytical techniques such as TGA, SEM, FTIR, BET, and the point of zero charge (pH(PZC)). The Acid Blue 25 adsorption experiment using Fe2O3@RH composites showed maximum adsorption at an initial concentration of Acid Blue 25 of 80 ppm, a contact time of 50 min, a temperature of 313 K, 0.25 g of Fe2O3@RH composites, and a pH of 2. The maximum percentage removal of Acid Blue 25 was found to be 91%. Various linear and nonlinear kinetic and isothermal models were used in this study to emphasize the importance and necessity of the adsorption process. Adsorption isotherms such as the Freundlich, Temkin, Langmuir, and Dubinin–Radushkevich (D–R) models were applied. The results showed that all the isotherms were best fitted on the data, except the linear form of the D–R isotherm. Adsorption kinetics such as the intraparticle kinetic model, the Elovich kinetic model, and the pseudo-first-order and pseudo-second-order models were applied. All the kinetic models were found to be best fitted on the data, except the PSO model (types II, III, and IV). Thermodynamic parameters such as ΔG° (KJ/mol), ΔH° (KJ/mol), and ΔS° (J/K*mol) were studied, and the reaction was found to be exothermic in nature with an increase in the entropy of the system, which supported the adsorption phenomenon. The current study contributes to a comprehensive understanding of the adsorption process and its underlying mechanisms through characterization, the optimization of the conditions, and the application of various models. The findings of the present study suggest practical applications of this method in wastewater treatment and environmental remediation.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3