Bimetallic TiO2 Nanoparticles for Lignin-Based Model Compounds Valorization by Integrating an Optocatalytic Flow-Microreactor

Author:

Pradhan Swaraj RashmiORCID,Paszkiewicz-Gawron Marta,Łomot Dariusz,Lisovytskiy Dmytro,Colmenares Juan CarlosORCID

Abstract

The challenge of improving the activity of TiO2 by modifying it with metals and using it for targeted applications in microreactor environments is an active area of research. Recently, microreactors have emerged as successful candidates for many photocatalytic reactions, especially for the selective oxidation process. The current work introduces ultrasound-assisted catalyst deposition on the inner walls of a perfluoro-alkoxy alkane (PFA) microtube under mild conditions. We report Cu-Au/TiO2 and Fe-Au/TiO2 nanoparticles synthesized using the sol–gel method. The obtained photocatalysts were thoroughly characterized by UV–Vis diffuse-reflectance spectroscopy (DRS), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 physisorption. The photocatalytic activity under UV (375 nm) and visible light (515 nm) was estimated by the oxidation of lignin-based model aromatic alcohols in batch and fluoropolymer-based flow systems. The bimetallic catalyst exhibited improved photocatalytic selective oxidation. Herein, four aromatic alcohols were individually investigated and compared. In our experiments, the alcohols containing hydroxy and methoxy groups (coniferyl and vanillin alcohol) showed high conversion (93% and 52%, respectively) with 8% and 17% selectivity towards their respective aldehydes, with the formation of other side products. The results offer an insight into ligand-to-metal charge transfer (LMCT) complex formation, which was found to be the main reason for the activity of synthesized catalysts under visible light.

Funder

National Science Centre in Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3