Study on the Enhancement Effect of Synergy between Multi-Size Functionalized Boron Nitride and Graphene Oxide on the Thermal Properties of Phase Change Composites

Author:

Xin Song123,Zhao Zhiwen23,Liu Shangxiao123ORCID,Liu Jiedong23,Li Mengya23

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

3. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Boron nitride nanosheet (BNNS) and graphene oxide (GO) as a single filler can effectively improve the thermal conductivity of the composites, and the synergistic mechanism of BNNS and GO was investigated in this paper. In this study, BNNS was first surface-functionalized and the multi-sized (50 nm, 200 nm, 500 nm) modified BNNS (A-BN) were attached to GO through non-covalent bonding interactions to form a cross-linked structure. Then, A-BN and GO were used as thermal fillers and support material adsorption eutectic phase change materials (PCMs) to prepare composite phase change material (CPCM). Characterization results show that small-size A-BN was more likely to form dense thermal networks with good compatibility and interface connectivity between PCMs, A-BN, and GO, ensuring that PCMs can be stored in the network without leaking. When the size of the BNNS was greater than 200 nm, the advantage of thermal conductivity obtained by A-BN was no longer obvious, and the phase change behavior of CPCM was inhibited. In general, the prepared CPCM has the ideal thermal response and thermal stability, which is very suitable for energy storage and thermal management applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3