Isolation of Novel ACE-Inhibitory and Antioxidant Peptides from Quinoa Bran Albumin Assisted with an In Silico Approach: Characterization, In Vivo Antihypertension, and Molecular Docking

Author:

Zheng YajunORCID,Wang Xian,Zhuang Yongliang,Li Yan,Tian Hailong,Shi Panqi,Li Guifeng

Abstract

Albumin is the major fraction of quinoa protein that is characterized as having high nutritional value. However, until now, scant information is available on the bioactivity of quinoa albumin or its hydrolysates. To promote its usage, we extracted albumin in this study from quinoa bran assisted with cellulase and hemicellulose, and hydrolyzed it by alcalase and trypsin to produce bioactive peptides. The hydrolysates (QBAH) were purified by gel filtration and reversed-phase high-performance liquid chromatography (RP-HPLC), followed by identification using liquid chromatography–mass spectrometry (LC-MS/MS). Furthermore, based on in silico analysis, one angiotensin-I converting enzyme (ACE)-inhibitory and antioxidant peptide, RGQVIYVL (946.6 Da), and two antioxidant peptides, ASPKPSSA (743.8 Da), and QFLLAGR (803.5 Da), from QBAH were synthesized. RGQVIYVL showed a high ACE-inhibitory activity (IC50 = 38.16 μM) with competitive mode of inhibition, and showed significant antihypertensive effect in spontaneously hypertensive rats at a concentration of 100–150 mg/kg body weight (bw). Molecular docking simulation showed that it could interact with the active ACE site via hydrogen bonds with high binding power. Moreover, RGQVIYVL, ASPKPSSA, and QFLLAGR all demonstrated high ·OH scavenging activity (IC50 = 61.69–117.46 μM), ABTS+ scavenging activity (58.29–74.28%) and Fe2+ chelating ability (32.54–82.48% at 0.5 mg/mL). They could also retain activity after gastrointestinal enzyme digestion. These results indicate that quinoa albumin is a potential source of bioactive peptides possessing antioxidant and ACE-inhibitory activities.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3