Abstract
Cistanche tubulosa aqueous extract (CTE) is already used as a botanical prescription drug for treating dementia in China. Our previous studies reported that phenylethanoid glycosides of CTE have anti-Alzheimer’s disease (AD) activity by inhibiting amyloid β peptide (Aβ) aggregation and deposition. However, recent studies considered that the phenylethanoid glycosides may be metabolized by intestinal bacteria, because all analysis results showed that the bioavailability of phenylethanoid glycosides is extremely low. In this study we demonstrate how iron chelation plays a crucial role in the Aβ aggregation and deposition inhibition mechanism of phenylethanoid glycosides of CTE. In addition, we further proved phenylethanoid glycosides (1–3) could reach brain. Active CTE component and action mechanism confirmation will be a great help for product quality control and bioavailability studies in the future. At the same time, we provide a new analysis method useful in determining phenylethanoid glycosides (1–3) in plants, foods, blood, and tissues for chemical fingerprint and pharmacokinetic research.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献