The Transport of Charged Molecules across Three Lipid Membranes Investigated with Second Harmonic Generation

Author:

Xu Baomei12,Li Jianhui12,Zhang Shuai12,Zeb Johar12,Chen Shunli3ORCID,Yuan Qunhui4ORCID,Gan Wei12ORCID

Affiliation:

1. Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China

2. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

3. Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China

4. Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China

Abstract

Subtle variations in the structure and composition of lipid membranes can have a profound impact on their transport of functional molecules and relevant cell functions. Here, we present a comparison of the permeability of bilayers composed of three lipids: cardiolipin, DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol), and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)). The adsorption and cross-membrane transport of a charged molecule, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on vesicles composed of the three lipids were monitored by second harmonic generation (SHG) scattering from the vesicle surface. It is revealed that structural mismatching between the saturated and unsaturated alkane chains in POPG leads to relatively loose packing structure in the lipid bilayers, thus providing better permeability compared to unsaturated lipid bilayers (DOPG). This mismatching also weakens the efficiency of cholesterol in rigidifying the lipid bilayers. It is also revealed that the bilayer structure is somewhat disturbed by the surface curvature in small unilamellar vesicles (SUVs) composed of POPG and the conical structured cardiolipin. Such subtle information on the relationship between the lipid structure and the molecular transport capability of the bilayers may provide clues for drug development and other medical and biological studies.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3