On Column Binding a Real-Time Biosensor for β-lactam Antibiotics Quantification

Author:

Abdullah Shahla M.,Rachid ShwanORCID

Abstract

This work aimed to develop accurate, quick, and practical tools for the detection of residues of penicillin G antibiotic in biological and non-biological samples. The assays were developed based on the binding mechanism of β-lactam to penicillin-binding proteins; samples of different concentrations of penicillin G were incubated with in vitro expressed 6X-Histidine-tagged soluble penicillin-binding protein (PBP2x*) of Streptococcus pneumoniae (S. pneumoniae), whereby penicillin G in samples specifically binds to PBP2x*. The fluorescent-labeled β-lactam analogue Bocillin FL was used as a competent substrate, and two different routes estimated the amounts of the penicillin G. The first route was established based on the differences in the concentration of non-bounded Bocillin FL molecules within the reactions while using a real-time polymerase chain reaction (PCR)-based method for fluorescence detection. The second route depended on the amount of the relative intensity of Bocillin FL bounded to Soluble PBP-2x*, being run on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-page), visualized by a ChemiDoc-It®2 Imager, and quantified based on the fluorescence affinity of the competent substrate. While both of the methods gave a broad range of linearity and high sensitivity, the on column based real-time method is fast, non-time consuming, and highly sensitive. The method identified traces of antibiotic in the range 0.01–0.2 nM in addition to higher accuracy in comparison to the SDS-based detection method, while the sensitivity of the SDS-based method ranged between 0.015 and 2 µM). Thus, the on column based real time assay is a fast novel method, which was developed for the first time based on the binding inhibition of a fluorescence competitor material and it can be adapted to screen traces of penicillin G in any biological and environmental samples.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3