Discrimination and Quantification of Cotton and Polyester Textile Samples Using Near-Infrared and Mid-Infrared Spectroscopies

Author:

Paz Maria Luís1,Sousa Clara1ORCID

Affiliation:

1. CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal

Abstract

In the textile industry, cotton and polyester (PES) are among the most used fibres to produce clothes. The correct identification and accurate composition estimate of fibres are mandatory, and environmentally friendly and precise techniques are welcome. In this context, the use of near-infrared (NIR) and mid-infrared (MIR) spectroscopies to distinguish between cotton and PES samples and further estimate the cotton content of blended samples were evaluated. Infrared spectra were acquired and modelled through diverse chemometric models: principal component analysis; partial least squares discriminant analysis; and partial least squares (PLS) regression. Both techniques (NIR and MIR) presented good potential for cotton and PES sample discrimination, although the results obtained with NIR spectroscopy were slightly better. Regarding cotton content estimates, the calibration errors of the PLS models were 3.3% and 6.5% for NIR and MIR spectroscopy, respectively. The PLS models were validated with two different sets of samples: prediction set 1, containing blended cotton + PES samples (like those used in the calibration step), and prediction set 2, containing cotton + PES + distinct fibre samples. Prediction set 2 was included to address one of the biggest known drawbacks of such chemometric models, which is the prediction of sample types that are not used in the calibration. Despite the poorer results obtained for prediction set 2, all the errors were lower than 8%, proving the suitability of the techniques for cotton content estimation. It should be stressed that the textile samples used in this work came from different geographic origins (cotton) and were of distinct presentations (raw, yarn, knitted/woven fabric), which strengthens our findings.

Funder

Integrated Project be@t—Textile Bioeconomy

Environmental Fund

European funds

scientific collaboration

Publisher

MDPI AG

Reference41 articles.

1. Near-infrared spectroscopy in the food industry;Downey;Food Technol.,1989

2. Citrus species and hybrids depicted by near- and mid-infrared spectroscopy;Silvana;J. Sci. Food Agric.,2018

3. Visible and near infrared spectroscopy in archaeometry;Burggraeve;Anal. Bioanal. Chem.,2007

4. Characterization of Flax Fibers by ATR-FTIR Spectroscopy;Ciobica;Cellul. Chem. Technol.,2018

5. Near-Infrared Spectroscopy Prediction of Cotton Fiber Quality Parameters;Sun;J. Nat. Fibers,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3