The Use of a Solid Bismuth Microelectrode for Vanadium Quantification by Adsorptive Stripping Voltammetry in Environmental Water Samples

Author:

Grabarczyk Malgorzata,Adamczyk Marzena,Wlazlowska Edyta

Abstract

This paper presents for the first time the use of an environmentally friendly solid bismuth microelectrode for the voltammetric quantification of V(V) in natural water samples. These studies were designed to replace the film bismuth electrode that had been introduced to eliminate the conventional sensors based on highly toxic mercury. In the proposed procedure, V(V) is preconcentrated at the solid bismuth microelectrode surface via the formation of electroactive complexes with cupferron from a solution of 0.1-mol L−1 acetate buffer, pH = 4.6 at a potential of −0.4 V. The linearity of the calibration graph is in the V(V) concentration range from 8 × 10−10 to 1 × 10−7 mol L−1 with a preconcentration time of 1 min. The limit of detection (calculated as 3 σ) is 2.5 × 10−10 mol L−1 for a preconcentration time of 1 min. It was also demonstrated that significant improvement in analytical parameters was achieved as a result of the activation of the solid electrode surface at a potential of −2.5 V for 2 s. The developed procedure is highly selective for the presence of foreign ions and organic compounds in tested samples. The accuracy of the recommended procedure was checked using SPS-WW1 waste water-certified reference materials of a complex composition, in which the concentration of V(V) determined by the proposed method was 95.1 ± 1.6 ng mL−1. Moreover, in keeping with the outlined procedure, river, tap and rain water samples were analyzed without any pretreatment, and recovery values from 96% to 106% were obtained.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3