Binding Mechanism of CD47 with SIRPα Variants and Its Antibody: Elucidated by Molecular Dynamics Simulations

Author:

Huang Kaisheng1,Liu Yi1ORCID,Wen Shuixiu1,Zhao Yuxin1,Ding Hanjing2,Liu Hui1,Kong De-Xin1ORCID

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

2. School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China

Abstract

The intricate complex system of the differentiation 47 (CD47) and the signal-regulatory protein alpha (SIRPα) cluster is a crucial target for cancer immunotherapy. Although the conformational state of the CD47-SIRPα complex has been revealed through crystallographic studies, further characterization is needed to fully understand the binding mechanism and to identify the hot spot residues involved. In this study, molecular dynamics (MD) simulations were carried out for the complexes of CD47 with two SIRPα variants (SIRPαv1, SIRPαv2) and the commercially available anti-CD47 monoclonal antibody (B6H12.2). The calculated binding free energy of CD47-B6H12.2 is lower than that of CD47-SIRPαv1 and CD47-SIRPαv2 in all the three simulations, indicating that CD47-B6H12.2 has a higher binding affinity than the other two complexes. Moreover, the dynamical cross-correlation matrix reveals that the CD47 protein shows more correlated motions when it binds to B6H12.2. Significant effects were observed in the energy and structural analyses of the residues (Glu35, Tyr37, Leu101, Thr102, Arg103) in the C strand and FG region of CD47 when it binds to the SIRPα variants. The critical residues (Leu30, Val33, Gln52, Lys53, Thr67, Arg69, Arg95, and Lys96) were identified in SIRPαv1 and SIRPαv2, which surround the distinctive groove regions formed by the B2C, C’D, DE, and FG loops. Moreover, the crucial groove structures of the SIRPα variants shape into obvious druggable sites. The C’D loops on the binding interfaces undergo notable dynamical changes throughout the simulation. For B6H12.2, the residues Tyr32LC, His92LC, Arg96LC, Tyr32HC, Thr52HC, Ser53HC, Ala101HC, and Gly102HC in its initial half of the light and heavy chains exhibit obvious energetic and structural impacts upon binding with CD47. The elucidation of the binding mechanism of SIRPαv1, SIRPαv2, and B6H12.2 with CD47 could provide novel perspectives for the development of inhibitors targeting CD47-SIRPα.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xianning

National Research Incubator Program of HBUST

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference46 articles.

1. The future of immune checkpoint therapy;Sharma;Science,2015

2. Introduction to checkpoint inhibitors and cancer immunotherapy;Sharpe;Immunol. Rev.,2017

3. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy;Topalian;Nat. Rev. Clin. Oncol.,2016

4. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family;Brooke;J. Immunol.,2004

5. Integrin-associated protein (CD47) and its ligands;Brown;Trends Cell Biol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3