Safranal Induces Vasorelaxation by Inhibiting Ca2+ Influx and Na+/Ca2+ Exchanger in Isolated Rat Aortic Rings

Author:

Al-Saigh Noor Nadhim,Abdalla ShtaywyORCID

Abstract

Introduction: Safranal, which endows saffron its unique aroma, causes vasodilatation and has a hypotensive effect in animal studies, but the mechanisms of these effects are unknown. In this study, we investigated the mechanisms of safranal vasodilation. Methods: Isolated rat endothelium-intact or -denuded aortic rings were precontracted with phenylephrine and then relaxed with safranal. To further assess the involvement of nitric oxide, prostaglandins, guanylate cyclase, and phospholipase A2 in safranal-induced vasodilation, aortic rings were preincubated with L-NAME, indomethacin, methylene blue, or quinacrine, respectively, then precontracted with phenylephrine, and safranal concentration–response curves were established. To explore the effects of safranal on Ca2+ influx, phenylephrine and CaCl2 concentration–response curves were established in the presence of safranal. Furthermore, the effect of safranal on aortic rings in the presence of ouabain, a Na+-K+ ATPase inhibitor, was studied to explore the contribution of Na+/Ca2+ exchanger to this vasodilation. Results: Safranal caused vasodilation in endothelium-intact and endothelium-denuded aortic rings. The vasodilation was not eliminated by pretreatment with L-NAME, indomethacin, methylene blue, or quinacrine, indicating the lack of a role for NO/cGMP. Safranal significantly inhibited the maximum contractions induced by phenylephrine, or by CaCl2 in Ca2+-free depolarizing buffer. Safranal also relaxed contractions induced by ouabain, but pretreatment with safranal totally abolished the development of ouabain contractions. Discussion/Conclusion: Inhibition of Na+-K+ ATPase by ouabain leads to the accumulation of Na+ intracellularly, forcing the Na+/Ca2+ exchanger to work in reverse mode, thus causing a contraction. Inhibition of the development of this contraction by preincubation with safranal indicates that safranal inhibited the Na+/Ca2+ exchanger. We conclude that safranal vasodilation is mediated by the inhibition of calcium influx from extracellular space through L-type Ca2+ channels and by the inhibition of the Na+/Ca2+ exchanger.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference45 articles.

1. Saffron (Crocus sativus) and its active ingredients: Role in the prevention and treatment of disease;Rahmani;Pharmacogn. J.,2017

2. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast;Baba;South Afr. J. Bot.,2015

3. Bioactivity assessment and toxicity of crocin: A comprehensive review;Alavizadeh;Food Chem. Toxicol.,2014

4. Crocin-induced endothelium-dependent vasodilation in isolated rat aorta;Razavi;Jundishapur J. Nat. Pharmaceut. Prod.,2017

5. The vasodilatory effect of crocin on rat tracheal smooth muscle and its possible mechanisms;Saadat;Iran. J. Pharmaceut. Res.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3