Abstract
Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered Escherichia coli in microaerobic conditions. The deletion of alcohol dehydrogenase (adhE) and acetate kinase (ackA) genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate. In fed-batch studies, microaerobic fermentation significantly improved the isoprene concentration in fermentation outlet gas (average 0.021 g/L), compared with fermentation under aerobic conditions (average 0.0009 g/L). The final production of D-lactate and isoprene can reach 44.0 g/L and 3.2 g/L, respectively, through fed-batch microaerobic fermentation. Our study demonstrated a dual-phase production strategy in the co-production of isoprene (gas phase) and lactate (liquid phase). The increased concentration of gas-phase isoprene could benefit the downstream process and decrease the production cost to collect and purify the bio-isoprene from the fermentation outlet gas. The proposed microaerobic process can potentially be applied in the production of other volatile bioproducts to benefit the downstream purification process.
Funder
National Natural Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献