Measurement of Glutathione as a Tool for Oxidative Stress Studies by High Performance Liquid Chromatography

Author:

Nuhu Faisal,Gordon Andrew,Sturmey RogerORCID,Seymour Anne-Marie,Bhandari SunilORCID

Abstract

Background: Maintenance of the ratio of glutathione in the reduced (GSH) and oxidised (GSSG) state in cells is important in redox control, signal transduction and gene regulation, factors that are altered in many diseases. The accurate and reliable determination of GSH and GSSG simultaneously is a useful tool for oxidative stress determination. Measurement is limited primarily to the underestimation of GSH and overestimation GSSG as a result of auto-oxidation of GSH. The aim of this study was to overcome this limitation and develop, optimise and validate a reverse-phase high performance liquid chromatographic (HPLC) assay of GSH and GSSG for the determination of oxidant status in cardiac and chronic kidney diseases. Methods: Fluorescence detection of the derivative, glutathione-O-pthaldialdehyde (OPA) adduct was used. The assay was validated by measuring the stability of glutathione and glutathione-OPA adduct under conditions that could affect the reproducibility including reaction time and temperature. Linearity, concentration range, limit of detection (LOD), limit of quantification (LOQ), recovery and extraction efficiency and selectivity of the method were assessed. Results: There was excellent linearity for GSH (r2 = 0.998) and GSSG (r2 = 0.996) over concentration ranges of 0.1 µM–4 mM and 0.2 µM–0.4 mM respectively. The extraction of GSH from tissues was consistent and precise. The limit of detection for GSH and GSSG were 0.34 µM and 0.26 µM respectively whilst their limits of quantification were 1.14 µM and 0.88 µM respectively. Conclusion: These data validate a method for the simultaneous measurement of GSH and GSSG in samples extracted from biological tissues and offer a simple determination of redox status in clinical samples.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3