Affiliation:
1. National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, Suzhou 215123, China
2. Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
Abstract
The combination of multiple electrode materials and their reasonable structural design are conducive to the preparation of composite electrodes with excellent performance. In this study, based on carbon nanofibers grown with Ni(OH)2 and NiO (CHO) prepared by electrospinning, hydrothermal growth, and low-temperature carbonization, five transition metal sulfides (MnS, CoS, FeS, CuS, and NiS) were hydrothermally grown on their surfaces, exhibiting that CHO/NiS had the optimal electrochemical properties. Subsequently, the effect of hydrothermal growth time on CHO/NiS revealed that the electrochemical performance of CHO/NiS-3h was optimal, with a specific capacitance of up to 1717 F g−1 (1 A g−1), due to its multistage core–shell structure. Moreover, the diffusion-controlled process of CHO/NiS-3h dominated its charge energy storage mechanism. Finally, the asymmetric supercapacitor assembled with CHO/NiS-3h as the positive electrode demonstrated an energy density of 27.76 Wh kg−1 at a maximum power density of 4000 W kg−1, and it still maintained a power density of 800 W kg−1 at a maximum energy density of 37.97 Wh kg−1, exhibiting the potential application of multistage core–shell composite materials in high-performance supercapacitors.
Funder
National Natural Science Foundation of China
Jiangsu Higher Education Institutions of China
Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation
PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献