Glycan-to-Glycan Binding: Molecular Recognition through Polyvalent Interactions Mediates Specific Cell Adhesion

Author:

Misevic Gradimir,Garbarino Emanuela

Abstract

Glycan-to-glycan binding was shown by biochemical and biophysical measurements to mediate xenogeneic self-recognition and adhesion in sponges, stage-specific cell compaction in mice embryos, and in vitro tumor cell adhesion in mammals. This intermolecular recognition process is accepted as the new paradigm accompanying high-affinity and low valent protein-to-protein and protein-to-glycan binding in cellular interactions. Glycan structures in sponges have novel species-specific sequences. Their common features are the large size >100 kD, polyvalency >100 repeats of the specific self-binding oligosaccharide, the presence of fucose, and sulfated and/or pyruvylated hexoses. These structural and functional properties, different from glycosaminoglycans, inspired their classification under the glyconectin name. The molecular mechanism underlying homophilic glyconectin-to-glyconectin binding relies on highly polyvalent, strong, and structure-specific interactions of small oligosaccharide motifs, possessing ultra-weak self-binding strength and affinity. Glyconectin localization at the glycocalyx outermost cell surface layer suggests their role in the initial recognition and adhesion event during the complex and multistep process. In mammals, Lex-to-Lex homophilic binding is structure-specific and has ultra-weak affinity. Cell adhesion is achieved through highly polyvalent interactions, enabled by clustering of small low valent structure in plasma membranes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3