Modified Supporting Materials to Fabricate Form Stable Phase Change Material with High Thermal Energy Storage

Author:

Yu Chengbin1ORCID,Song Youngseok2

Affiliation:

1. Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Fiber Convergence Materials Engineering, Dankook University, Yongin-si 16890, Republic of Korea

Abstract

Thermal energy storage (TES) is vital to the absorption and release of plenty of external heat for various applications. For such storage, phase change material (PCM) has been considered as a sustainable energy material that can be integrated into a power generator. However, pure PCM has a leakage problem during the phase transition process, and we should fabricate a form stable PCM composite using some supporting materials. To prevent the leakage problem during the phase transition process, two different methods, microencapsulation and 3D porous infiltration, were used to fabricate PCM composites in this work. It was found that both microsphere and 3D porous aerogel supported PCM composites maintained their initial solid state without any leakage during the melting process. Compared with the microencapsulated PCM composite, the 3D porous aerogel supported PCM exhibited a relatively high weight fraction of working material due to its high porosity. In addition, the cross-linked graphene aerogel (GCA) could reduce volume shrinkage effectively during the infiltration process, and the GCA supported PCM composite kept a high latent heat (∆H) and form stability.

Funder

GRRC program of Gyeonggi Province

Ministry of Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3