Novel 3,9-Disubstituted Acridines with Strong Inhibition Activity against Topoisomerase I: Synthesis, Biological Evaluation and Molecular Docking Study

Author:

Krochtová Kristína1,Halečková Annamária2,Janovec Ladislav2ORCID,Blizniaková Michaela1,Kušnírová Katarína2ORCID,Kožurková Mária1ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia

2. Department of Organic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia

Abstract

A series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives 17a–17j, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level. The selected 3,9-disubstituted acridine derivatives were studied in the presence of DNA using spectroscopic (UV-Vis, circular dichroism, and thermal denaturation) and electrophoretic (nuclease activity, relaxation and unwinding assays for topoisomerase I and decatenation assay for topoisomerase IIα) methods. Binding constants (2.81–9.03 × 104 M−1) were calculated for the derivatives from the results of the absorption titration spectra. The derivatives were found to have caused the inhibition of both topoisomerase I and topoisomerase IIα. Molecular docking simulations suggested a different way in which the acridines 17a–17j can interact with topoisomerase I versus topoisomerase IIα. A strong correlation between the lipophilicity of the derivatives and their ability to stabilize the intercalation complex was identified for all of the studied agents. Acridines 17a–17j were also subjected to in vitro screening conducted by the Developmental Therapeutic Program of the National Cancer Institute (NCI) against a panel of 60 cancer cell lines. The strongest biological activity was displayed by aniline acridine 17a (MCF7–GI50 18.6 nM) and N,N-dimethylaniline acridine 17b (SR–GI50 38.0 nM). The relationship between the cytostatic activity of the most active substances (derivatives 17a, 17b, and 17e–17h) and their values of KB, LogP, ΔS°, and δ was also investigated. Due to the fact that a significant correlation was only found in the case of charge density, δ, it is possible to assume that the cytostatic effect might be dependent upon the structural specificity of the acridine derivatives.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3