Preparation and Application of Electrochemical Horseradish Peroxidase Sensor Based on a Black Phosphorene and Single-Walled Carbon Nanotubes Nanocomposite

Author:

Li Xiaoqing,Wang Lisi,Wang Baoli,Zhang Siyue,Jiang Meng,Fu Wanting,Sun WeiORCID

Abstract

To design a new electrochemical horseradish peroxidase (HRP) biosensor with excellent analytical performance, black phosphorene (BP) nanosheets and single-walled carbon nanotubes (SWCNTs) nanocomposites were used as the modifier, with a carbon ionic liquid electrode (CILE) as the substrate electrode. The SWCNTs-BP nanocomposite was synthesized by a simple in situ mixing procedure and modified on the CILE surface by the direct casting method. Then HRP was immobilized on the modified electrode with Nafion film. The electrocatalysis of this electrochemical HRP biosensor to various targets was further explored. Experimental results indicated that the direct electrochemistry of HRP was realized with a pair of symmetric and quasi-reversible redox peaks appeared, which was due to the presence of SWCNTs-BP on the surface of CILE, exhibiting synergistic effects with high electrical conductivity and good biocompatibility. Excellent electrocatalytic activity to trichloroacetic acid (TCA), sodium nitrite (NaNO2), and hydrogen peroxide (H2O2) were realized, with a wide linear range and a low detection limit. Different real samples, such as a medical facial peel solution, the soak water of pickled vegetables, and a 3% H2O2 disinfectant, were further analyzed, with satisfactory results, further proving the potential practical applications for the electrochemical biosensor.

Funder

National Natural Science Foundation of China

Specific Research Fund of the Innovation Platform for Academicians of Hainan Province

Innovation Platform for Academicians of Hainan Province, and the Hainan Provincial Natural Science Foundation of High Level-talent Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3