Developed and Validated Capillary Isotachophoresis Method for the Rapid Determining Organic Acids in Children’s Saliva

Author:

Dobrowolska-Iwanek Justyna1,Jamka-Kasprzyk Małgorzata2,Rusin Marcelina34ORCID,Paśko Paweł1ORCID,Grekh Sviatoslav1,Jurczak Anna2ORCID

Affiliation:

1. Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, 31-008 Krakow, Poland

2. Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland

3. Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland

4. Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland

Abstract

One of the current challenges facing researchers is the search for alternative biological material, as opposed to routinely and invasively collected (such as blood), as the analysis of the former would provide information about the state of human health, allowing for the diagnosis of diseases in their early stages. With the search for disease biomarkers in alternative materials, the development of newer analytical solutions has been observed. This study aims to develop a reliable analytical method using the capillary isotachophoresis technique for the determination of organic acids in children’s saliva, the presence/elevation of which can be used in the future for diagnostic purposes. Organic acids such as formic, lactic, acetic, propionic, and butyric acid, were determined in the saliva of healthy children without carious lesions. The limit of quantification determined in the validation process was found to vary from 0.05 to 1.56 mg/L, the recoveries at the two levels were determined to vary between 90% and 110% for level I, while for level II the corresponding values of 75% and 106% were found; the presentation, expressed as relative standard deviation values (RSD), did not exceed 5%. The parameters determined while validating the results method indicated that the obtained are reliable. The Red–Green–Blue (RGB) additive color model was used for the evaluation of the method. This comparative analysis allowed us to define the color of the method, which expresses whether it meets the given assumptions and requirements. According to the RGB model, the isotachophoresis method developed requires less reagent input, shorter sample preparation times, and results with lower energy consumption. Thus, the subject procedure may provide an alternative, routine tool for determining organic acids in human saliva, to be applied in the diagnosing of diseases of various etiological origins.

Funder

Jagiellonian University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3