Directing 2D-Coordination Networks: Combined Effects of a Conformationally Flexible 3,2′:6′,3″-Terpyridine and Chain Length Variation in 4′-(4-n-Alkyloxyphenyl) Substituents

Author:

Rocco DalilaORCID,Prescimone AlessandroORCID,Constable Edwin C.ORCID,Housecroft Catherine E.ORCID

Abstract

The synthesis and characterization of 4′-(4-n-propoxyphenyl)-3,2′:6′,3″-terpyridine is described. Five 2D-coordination networks have been isolated by crystal growth at room temperature from reactions of Co(NCS)2 with 4′-(4-n-alkyloxyphenyl)-3,2′:6′,3″-terpyridines in which the n-alkyl group is ethyl, n-propyl, n-butyl, n-pentyl and n-hexyl in ligands 2–6, respectively. The single-crystal structures of [{Co(2)2(NCS)2}.0.6CHCl3]n, [{Co(3)2(NCS)2}.4CHCl3.0.25H2O]n, [{Co(4)2(NCS)2}.4CHCl3]n, [Co2(5)4(NCS)4]n and [Co(6)2(NCS)2]n have been determined, and powder X-ray diffraction has demonstrated that the single-crystal structures are representative of the bulk materials. Each compound possesses a (4,4) net with Co centres as 4-connecting nodes. For the assemblies containing 2, 3 and 4, the (4,4) net comprises two geometrically different rhombuses, and the nets pack in an ABAB... arrangement with cone-like arrangements of n-alkyloxyphenyl groups being accommodated in a similar unit in an adjacent net. An increase in the n-alkyloxy chain length has two consequences: there is a change in the conformation of the 3,2′:6′,3″-tpy metal-binding domain, and the (4,4) net comprises identical rhombuses. Similarities and differences between the assemblies with ligands 2–6 and the previously reported [{Co(1)2(NCS)2}.3MeOH]n and [{Co(1)2(NCS)2}.2.2CHCl3]n in which 1 is 4′-(4-methoxyphenyl)-3,2′:6′,3″-terpyridine are discussed. The results demonstrate the effects of combining a variable chain length in the 4′-(4-n-alkyloxyphenyl) substituents of 3,2′:6′,3″-tpy and a conformationally flexible 3,2′:6′,3″-tpy metal-binding domain.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3