Microalga Coelastrella sp. Cultivation on Unhydrolyzed Molasses-Based Medium towards the Optimization of Conditions for Growth and Biomass Production under Mixotrophic Cultivation

Author:

Thepsuthammarat Kamolwan12,Reungsang Alissara234ORCID,Plangklang Pensri23ORCID

Affiliation:

1. Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand

2. Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand

3. Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand

4. Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand

Abstract

Improving biomass production with the utilization of low-cost substrate is a crucial approach to overcome the hindrance of high cost in developing large-scale microalgae production. The microalga Coelastrella sp. KKU-P1 was mixotrophically cultivated using unhydrolyzed molasses as a carbon source, with the key environmental conditions being varied in order to maximize biomass production. The batch cultivation in flasks achieved the highest biomass production of 3.81 g/L, under an initial pH 5.0, a substrate to inoculum ratio of 100:3, an initial total sugar concentration of 10 g/L, and a sodium nitrate concentration of 1.5 g/L with continuous light illumination at 23.7 W/m2. The photobioreactor cultivation results indicated that CO2 supplementation did not improve biomass production. An ambient concentration of CO2 was sufficient to promote the mixotrophic growth of the microalga as indicated by the highest biomass production of 4.28 g/L with 33.91% protein, 46.71% carbohydrate, and 15.10% lipid. The results of the biochemical composition analysis suggest that the microalgal biomass obtained is promising as a source of essential amino acids and pigments as well as saturated and monounsaturated fatty acids. This research highlights the potential for bioresource production via microalgal mixotrophic cultivation using untreated molasses as a low-cost raw material.

Funder

Research Group for Development of Microbial Hydrogen Production Process from Biomass

Thailand Science Research and Innovation (TSRI) Senior Research Scholar

Fermentation Research Center for Value Added Agricultural Products

National Research Council of Thailand

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3