Ultra-High Cycling Stability of 3D Flower-like Ce(COOH)3 for Supercapacitor Electrode via a Facile and Scalable Strategy

Author:

He Qing1ORCID,Wang Wanglong2,Yang Ning3,Chen Wenmiao2,Yang Xing1,Fang Xing1,Zhang Yuanxiang1ORCID

Affiliation:

1. Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China

2. Department of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310058, China

3. Department of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

An electrode material with high performance, long durability, and low cost for supercapacitors has long been desired in academia and industry. Among all the factors that affect the electrochemical performance and cycling stability of electrode materials, the morphology and intrinsic structure characteristics are the most important. In this study, a novel 3D flower-like Ce(COOH)3 electrode material was designed by taking advantage of the Ce3+ and -COOH groups and fabricated by a one-pot microwave-assisted method. The morphology and structure characteristics of the sample were examined by SEM, EDS, TEM, XRD, FT-IR, XPS, N2 adsorption/desorption techniques, and the electrochemical behaviors were investigated in a three-electrode configuration. The Ce(COOH)3 electrode presents an excellent specific capacitance of 140 F g−1 at 1 A g−1, higher than many other previously reported Ce-based electrodes. In addition, it delivers high rate capability that retains 60% of its initial capacitance when the current density is magnified 20 times. Dramatically, the Ce(COOH)3 electrode exhibits an ultra-high cycling stability with capacitance retention of 107.9% after 60,000 cycles, which is the highest durability among reported Ce–organic compound electrodes to the best of our knowledge. The excellent electrochemical performance is ascribed to its intrinsic crystal structure and unique morphology. This work indicates that the 3D flower-like Ce(COOH)3 has significant potential for supercapacitor applications and the facile and scalable synthesis strategy can be extended to produce other metal–organic composite electrodes.

Funder

the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Research Funding Project of Education Department of Zhejiang Province

Municipal Key Technologies R & D Program of Quzhou Science and Technology Bureau

Quzhou Xinhui Plastic Fittings Co., Ltd.

Quzhou Xianfeng Advanced Materials Co., Ltd.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3