Detection of Aromatic Hydrocarbons in Aqueous Solutions Using Quartz Tuning Fork Sensors Modified with Calix[4]arene Methoxy Ester Self-Assembled Monolayers: Experimental and Density Functional Theory Study

Author:

Rahman Shofiur1ORCID,Al-Gawati Mahmoud A.12,Alfaifi Fatimah S.2,Alenazi Wadha Khalaf2,Alarifi Nahed2,Albrithen Hamad12,Alodhayb Abdullah N.12ORCID,Georghiou Paris E.3ORCID

Affiliation:

1. Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada

Abstract

Quartz tuning forks (QTFs), which were coated with gold and with self-assembled monolayers (SAM) of a lower-rim functionalized calix[4]arene methoxy ester (CME), were used for the detection of benzene, toluene, and ethylbenzene in water samples. The QTF device was tested by measuring the respective frequency shifts obtained using small (100 µL) samples of aqueous benzene, toluene, and ethylbenzene at four different concentrations (10−12, 10−10, 10−8, and 10−6 M). The QTFs had lower limits of detection for all three aromatic hydrocarbons in the 10−14 M range, with the highest resonance frequency shifts (±5%) being shown for the corresponding 10−6 M solutions in the following order: benzene (199 Hz) > toluene (191 Hz) > ethylbenzene (149 Hz). The frequency shifts measured with the QTFs relative to that in deionized water were inversely proportional to the concentration/mass of the analytes. Insights into the effects of the alkyl groups of the aromatic hydrocarbons on the electronic interaction energies for their hypothetical 1:1 supramolecular host–guest binding with the CME sensing layer were obtained through density functional theory (DFT) calculations of the electronic interaction energies (ΔIEs) using B3LYP-D3/GenECP with a mixed basis set: LANL2DZ and 6-311++g(d,p), CAM-B3LYP/LANL2DZ, and PBE/LANL2DZ. The magnitudes of the ΔIEs were in the following order: [Au4-CME⊃[benzene] > [Au4-CME]⊃[toluene] > [Au4-CME]⊃[ethylbenzene]. The gas-phase BSSE-uncorrected ΔIE values for these complexes were higher, with values of −96.86, −87.80, and −79.33 kJ mol−1, respectively, and −86.39, −77.23, and −67.63 kJ mol−1, respectively, for the corresponding BSSE-corrected values using B3LYP-D3/GenECP with LANL2dZ and 6-311++g(d,p). The computational findings strongly support the experimental results, revealing the same trend in the ΔIEs for the proposed hypothetical binding modes between the tested analytes with the CME SAMs on the Au-QTF sensing surfaces.

Funder

Deputyship for Research & Innovation, “Ministry of Education”

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3