Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath

Author:

Zhang Qian-ChunORCID,Yan Wu-Li,Jiang Li,Zheng Yu-Guo,Wang Jing-Xin,Zhang Run-KunORCID

Abstract

In this work, we successfully developed a novel and sensitive gas sensor for the determination of trace acetophenone based on its cataluminescence (CTL) emission on the surface of nano-praseodymium oxide (nano-Pr6O11). The effects of working conditions such as temperature, flow rate, and detecting wavelength on the CTL sensing were investigated in detail. Under the optimized conditions, the sensor exhibited linear response to the acetophenone in the range of 15–280 mg/m3 (2.8–52 ppm), with a correlation coefficient (R2) of 0.9968 and a limit of detection (S/N = 3) of 4 mg/m3 (0.7 ppm). The selectivity of the sensor was also investigated, no or weak response to other compounds, such as alcohols (methanol, ethanol, n-propanol, iso-propanol, n-butanol), aldehyde (formaldehyde and acetaldehyde), benzenes (toluene, o-xylene, m-xylene, p-xylene), n-pentane, ethyl acetate, ammonia, carbon monoxide, carbon dioxide. Finally, the present sensor was applied to the determination of acetophenone in human exhaled breath samples. The results showed that the sensor has promising application in clinical breath analysis.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3