Copper(II) 2,2-Bis(Hydroxymethyl)Propionate Coordination Compounds with Hexamethylenetetramine: From Mononuclear Complex to One-Dimensional Coordination Polymer

Author:

Rauf SadafORCID,Trzesowska-Kruszynska AgataORCID,Sierański TomaszORCID,Świątkowski MarcinORCID

Abstract

Three new copper coordination compounds derived from 2,2-bis(hydroxymethyl)propionic acid (dmpa) and hexamethylenetetramine (hmta) were obtained and their crystal structures were determined. The stoichiometry of the reagents applied in the syntheses reflects the metal to ligand molar ratio in the formed solid products. Due to the multiple coordination modes of the used ligands, wide structural diversity was achieved among synthesized compounds, i.e., mononuclear [Cu(dmp)2(hmta)2(H2O)] (1), dinuclear [Cu2(dmp)4(hmta)2] (2), and 1D coordination polymer [Cu2(dmp)4(hmta)]n (3). Their supramolecular structures are governed by O—H•••O and O—H•••N hydrogen bonds. The compounds were characterized in terms of absorption (UV-Vis and IR) and thermal properties. The relationships between structural features and properties were discussed in detail. Owing to discrepancies in the coordination mode of a dmp ligand, bidentate chelating in 1, and bidentate bridging in 2 and 3, there is a noticeable change in the position of the bands corresponding to the stretching vibrations of the carboxylate group in the IR spectra. The differences in the structures of the compounds are also reflected in the nature and position of the UV-Vis absorption maxima, which are located at lower wavelengths for 1.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Triple System Calcium Iodide-HMTA-Water;Bulletin of Science and Practice;2022-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3