Molecular Dereplication and In Vitro and In Silico Pharmacological Evaluation of Coriandrum sativum against Neuroblastoma Cells

Author:

Marcucci Maria CristinaORCID,Oliveira Carlos RochaORCID,Spindola Daniel,Antunes Alyne A.,Santana Leila Y. K.,Cavalaro Victor,Costa Isabelle B.,de Carvalho Ana C.,Veiga Thiago A. M.ORCID,Medeiros Livia S.ORCID,dos Santos Zamarioli LucasORCID,Gonçalves Carolina P.,Santos Milena F.,Grecco Simone S.,Suzuki Vanessa Y.,Ferreira Lydia Masako,Garcia Daniel M.

Abstract

The aim of this study was to investigate the cytotoxic activity of the Coriandrum sativum (C. sativum) ethanolic extract (CSEE) in neuroblastoma cells, chemically characterize the compounds present in the CSEE, and predict the molecular interactions and properties of ADME. Thus, after obtaining the CSEE and performing its chemical characterization through dereplication methods using UPLC/DAD-ESI/HRMS/MS, PM6 methods and the SwissADME drug design platform were used in order to predict molecular interactions and ADME properties. The CSEE was tested for 24 h in neuroblastoma cells to the establishment of the IC50 dose. Then, the cell death was evaluated, using annexin-PI, as well as the activity of the effector caspase 3, and the protein and mRNA levels of Bax and Bcl-2 were analyzed by ELISA and RT-PCR, respectively. By UHPLC/DAD/HRMS-MS/MS analysis, the CSEE showed a high content of isocoumarins-dihydrocoriandrin, coriandrin, and coriandrones A and B, as well as nitrogenated compounds (adenine, adenosine, and tryptophan). Flavonoids (apigenin, hyperoside, and rutin), phospholipids (PAF C-16 and LysoPC (16:0)), and acylglicerol were also identified in lower amount as important compounds with antioxidant activity. The in silico approach results showed that the compounds 1 to 6, which are found mostly in the C. sativum extract, obey the “Five Rules” of Lipinski, suggesting a good pharmacokinetic activity of these compounds when administered orally. The IC50 dose of CSEE (20 µg/mL) inhibited cell proliferation and promoted cell death by the accumulation of cleaved caspase-3 and the externalization of phosphatidylserine. Furthermore, CSEE decreased Bcl-2 and increased Bax, both protein and mRNA levels, suggesting an apoptotic mechanism. CSEE presents cytotoxic effects, promoting cell death. In addition to the promising results predicted through the in silico approach for all compounds, the compound 6 showed the best results in relation to stability due to its GAP value.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3