Structural Evolution of Small-Sized Phosphorus-Doped Boron Clusters: A Half-Sandwich-Structured PB15 Cluster

Author:

Wang Danyu1,Yang Yueju1,Li Shixiong1,Chen Deliang1

Affiliation:

1. School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China

Abstract

The present study is a theoretical investigation into the structural evolution, electronic properties, and photoelectron spectra of phosphorus-doped boron clusters PBn0/− (n = 3–17). The results of this study revealed that the lowest energy structures of PBn− (n = 3–17) clusters, except for PB17−, exhibit planar or quasi-planar structures. The lowest energy structures of PBn (n = 3–17), with the exceptions of PB7, PB9, and PB15, are planar or quasi-planar. The ground state of PB7 has an umbrella-shaped structure, with C6V symmetry. Interestingly, the neutral cluster PB15 has a half-sandwich-like structure, in which the P atom is attached to three B atoms at one end of the sandwich, exhibiting excellent relative and chemical stability due to its higher second-order energy difference and larger HOMO–LUMO energy gap of 4.31 eV. Subsequently, adaptive natural density partitioning (AdNDP) and electron localization function (ELF) analyses demonstrate the bonding characteristics of PB7 and PB15, providing support for the validity of their stability. The calculated photoelectron spectra show distinct characteristic peaks of PBn− (n = 3–17) clusters, thus providing theoretical evidence for the future identification of doped boron clusters. In summary, our work has significant implications for understanding the structural evolution of doped boron clusters PBn0/− (n = 3–17), motivating further experiments regarding doped boron clusters.

Funder

Central Guiding Local Science and Technology Development Foundation of China

Growth Foundation for Young Scientists of the Education Department of Guizhou Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3