Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste

Author:

Gerlicz Wiktoria1ORCID,Sypka Marcin1ORCID,Jodłowska Iga1ORCID,Białkowska Aneta M.1

Affiliation:

1. Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland

Abstract

The volume of difficult-to-process keratin waste is increasing as a result of rising global meat production. If not properly managed, this waste can contribute to environmental pollution and pose a threat to human and animal welfare. An interesting and more sustainable alternative is therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to degrade α- and β-keratin wastes. A total of 113 bacterial strains were isolated from environmental samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a two-step screening for proteolytic and keratinolytic activity. The ability to degrade a β-rich keratin substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast, when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium, Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study are a promising precursor for the development of new, more sustainable methods of managing keratin waste to produce high-value hydrolysates.

Funder

Lodz University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3