Molecular Property Prediction of Modified Gedunin Using Machine Learning

Author:

Aly Mohammed1ORCID,Alotaibi Abdullah Shawan2ORCID

Affiliation:

1. Department of Artificial Intelligence, Faculty of Artificial Intelligence, Egyptian Russian University, Badr City 11829, Egypt

2. Computer Science Department, Shaqra University, Shaqra City 11961, Saudi Arabia

Abstract

Images of molecules are often utilized in education and synthetic exploration to predict molecular characteristics. Deep learning (DL) has also had an influence on drug research, such as the interpretation of cellular images as well as the development of innovative methods for the synthesis of organic molecules. Although research in these areas has been significant, a comprehensive review of DL applications in drug development would be beyond the scope of a single Account. In this study, we will concentrate on a single major area where DL has influenced molecular design: the prediction of molecular properties of modified gedunin using machine learning (ML). AI and ML technologies are critical in drug research and development. In these other words, deep learning (DL) algorithms and artificial neural networks (ANN) have changed the field. In short, advances in AI and ML present a good potential for rational drug design and exploration, which will ultimately benefit humanity. In this paper, long short-term memory (LSTM) was used to convert a modified gedunin SMILE into a molecular image. The 2D molecular representations and their immediately visible highlights should then provide adequate data to predict the subordinate characteristics of atom design. We aim to find the properties of modified gedunin using K-means clustering; RNN-like ML tools. To support this postulation, neural network (NN) clustering based on the AI picture is used and evaluated in this study. The novel chemical developed via profound learning has long been predicted on characteristics. As a result, LSTM with RNNs allow us to predict the properties of molecules of modified gedunin. The total accuracy of the suggested model is 98.68%. The accuracy of the molecular property prediction of modified gedunin research is promising enough to evaluate extrapolation and generalization. The model suggested in this research requires just seconds or minutes to calculate, making it faster as well as more effective than existing techniques. In short, ML can be a useful tool for predicting the properties of modified gedunin molecules.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

1. Analyzing learned molecular representations for property prediction;Yang;J. Chem. Inf. Model.,2019

2. Automatic generation of complementary descriptors with molecular graph networks;Merkwirth;J. Chem. Inf. Model.,2005

3. Recent trends in deep learning based natural language processing [review article];Young;IEEE Comput. Mag.,2018

4. Review on reliable pattern recognition with machine learning techniques;Bhamare;Fuzzy Inf. Eng.,2018

5. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., and Dahl, G.E. (2017, January 6–11). Neural message passing for quantum chemistry. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3