Abstract
Akebia saponin D (ASD) is derived from the Dipsacus asper Wall. ex Henry, which is a traditional Chinese medicine commonly used to treat rheumatic arthritis (RA). However, the in-depth mechanism of the anti-inflammatory effect of ASD is still unclear. This study aimed to preliminarily explore the anti-inflammatory effect of ASD and the underlying mechanisms from the perspective of DNA methylation and inflammation-related pathways. We found that ASD significantly reduced the production of multiple inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-induced RAW264.7 cells. The expression of DNA methyltransferase (DNMT) 3b and inducible nitric oxide synthase (iNOS) was also obviously inhibited by the ASD treatment. The protein and mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also significantly inhibited by ASD. ASD inhibited the macrophage M1 phenotype, inhibited the high level of DNMT3b, and downregulated the signal transducer and activator of the transcription 3 (STAT3) pathway to exert its anti-inflammatory activity. Furthermore, DNMT3b siRNA and Nrf2 siRNA significantly promoted the anti-inflammatory effect of ASD. Our study demonstrates for the first time that ASD inhibits the IL-6-STAT3-DNMT3b axis and activates the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to achieve its inhibitory effect on inflammatory reactions.
Funder
Young scientific and technological talents growth project of Guizhou Provincial Department of Education
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献