Palladium-Catalyzed Direct (Het)arylation Reactions of Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole and 4,8-Dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)

Author:

Chmovzh Timofey N.12ORCID,Kudryashev Timofey A.13,Alekhina Daria A.14,Rakitin Oleg A.1ORCID

Affiliation:

1. N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia

2. Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia

3. Department of Chemistry, Moscow State University, 119899 Moscow, Russia

4. Higher Chemical College, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia

Abstract

Palladium-catalyzed direct (het)arylation reactions of strongly electron-withdrawing tricyclic benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) and its 4,8-dibromo derivative were studied; the conditions for the selective formation of mono- and bis-aryl derivatives were found. The reaction of 4,8-dibromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with thiophenes in the presence of palladium acetate as a catalyst and potassium pivalate as a base, depending on the conditions used, selectively gave both mono- and bis-thienylated benzo-bis-thiadiazoles in low to moderate yields; arenes were found to be inactive in these reactions. It was discovered that direct C–H arylation of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole with bromo(iodo)arenes and -thiophenes in the presence of Pd(OAc)2 and di-tert-butyl(methyl)phosphonium tetrafluoroborate salt is a powerful tool for the selective formation of 4-mono- and 4,8-di(het)arylated benzo-bis-thiadiazoles. Oxidative double C–H hetarylation of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole with thiophenes in the presence of Pd(OAc)2 and silver (I) oxide in DMSO was successfully employed to prepare bis-thienylbenzo-bis-thiadiazoles in moderate yields.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3