Increasing Reaction Rates of Water-Soluble Porphyrins for 64Cu Radiopharmaceutical Labeling

Author:

Pęgier Mateusz1,Kilian Krzysztof1ORCID,Pyrzynska Krystyna2ORCID

Affiliation:

1. Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland

2. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Abstract

Searching for new compounds and synthetic routes for medical applications is a great challenge for modern chemistry. Porphyrins, natural macrocycles able to tightly bind metal ions, can serve as complexing and delivering agents in nuclear medicine diagnostic imaging utilizing radioactive nuclides of copper with particular emphasis on 64Cu. This nuclide can, due to multiple decay modes, serve also as a therapeutic agent. As the complexation reaction of porphyrins suffers from relatively poor kinetics, the aim of this study was to optimize the reaction of copper ions with various water-soluble porphyrins in terms of time and chemical conditions, that would meet pharmaceutical requirements and to develop a method that can be applied for various water-soluble porphyrins. In the first method, reactions were conducted in a presence of a reducing agent (ascorbic acid). Optimal conditions, in which the reaction time was 1 min, comprised borate buffer at pH 9 with a 10-fold excess of ascorbic acid over Cu2+. The second approach involved a microwave-assisted synthesis at 140 °C for 1–2 min. The proposed method with ascorbic acid was applied for radiolabeling of porphyrin with 64Cu. The complex was then subjected to a purification procedure and the final product was identified using high-performance liquid chromatography with radiometric detection.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3