On the Pathomorphological Pattern of the Efficiency of Photodynamic Therapy of Murine Melanoma B16 Using a New Photosensitizer Based on Chlorin e6 Conjugate with a Prostate-Specific Membrane Antigen

Author:

Abramova Olga B.ORCID,Demyashkin Grigory A.,Drozhzhina Valentina V.,Yakovleva Nina D.,Kozlovtseva Ekaterina A.,Sivovolova Tatiana P.,Shegay Petr V.,Ivanov Sergey A.,Kaprin Andrey D.

Abstract

Photodynamic therapy (PDT) is an effective treatment for a number of solid malignancies. In this work, the antitumor efficacy of photodynamic therapy for murine B16 melanoma with intravenous administration of a new photosensitizer (PS) based on the chlorin e6 conjugate with a prostate-specific membrane antigen (PSMA) was studied in vivo. We have previously published the data obtained in the first part of the study: the dynamics of PS accumulation in the tumor and surrounding tissues and the antitumor efficacy of the photodynamic therapy, which was evaluated by the regression parameters and morphological characteristics of the tumors—including by the complete regression of the tumors, the absolute growth rate of the tumors among the mice with continued tumor growth, and an increase in life expectancy compared to the control. The criterion for a complete cure was the absence of signs of tumor recurrence within 90 days after therapy. The conducted studies demonstrated the high efficiency of the new photosensitizer for the photodynamic therapy of B16 melanoma. This article presents a continuation of this work, including histological studies of the zones exposed to laser irradiation on the 21st day after treatment and an assessment of the therapeutic potential of photodynamic therapy for the destruction of tumor cells. Pathological studies in the zones of photodynamic exposure revealed that the effectiveness of the PDT depended on the PS dose and the laser irradiation parameters.

Funder

Medical Radiological Research Center

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3