Abstract
The majority of clear cell renal cell carcinomas (ccRCCs) are characterized by mutations in the Von Hippel–Lindau (VHL) tumor suppressor gene, which leads to the stabilization and accumulation of the HIF2α transcription factor that upregulates key oncogenic pathways that promote glucose metabolism, cell cycle progression, angiogenesis, and cell migration. Although FDA-approved HIF2α inhibitors for treating VHL disease-related ccRCC are available, these therapies are associated with significant toxicities such as anemia and hypoxia. To improve ccRCC-specific drug delivery, peptide amphiphile micelles (PAMs) were synthesized incorporating peptides targeted to the CD70 marker expressed by ccRCs and anti-HIF2α siRNA, and the ability of HIF2α-CD27 PAMs to modulate HIF2α and its downstream targets was evaluated in human ccRCC patient-derived cells. Cell cultures were derived from eight human ccRCC tumors and the baseline mRNA expression of HIF2A and CD70, as well as the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 were first determined. As expected, each gene was overexpressed by at least 63% of all samples compared to normal kidney proximal tubule cells. Upon incubation with HIF2α-CD27 PAMs, a 50% increase in ccRCC-binding was observed upon incorporation of a CD70-targeting peptide into the PAMs, and gel shift assays demonstrated the rapid release of siRNA (>80% in 1 h) under intracellular glutathione concentrations, which contributed to ~70% gene knockdown of HIF2α and its downstream genes. Further studies demonstrated that knockdown of the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 led to inhibition of their oncogenic functions of glucose transport, cell proliferation, angiogenic factor release, and cell migration by 50–80%. Herein, the development of a nanotherapeutic strategy for ccRCC-specific siRNA delivery and its potential to interfere with key oncogenic pathways is presented.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference73 articles.
1. Epidemiology of Renal Cell Carcinoma;Padala;World J. Oncol.,2020
2. Prognostic significance of VHL, HIF1A, HIF2A, VEGFA and p53 expression in patients with clearcell renal cell carcinoma treated with sunitinib as firstline treatment;Wierzbicki;Int. J. Oncol.,2019
3. Clear cell renal cell carcinoma: A comparative study of histological and chromosomal characteristics between primary tumors and their corresponding metastases;Dagher;Virchows Arch.,2017
4. Current and emerging therapies for first line treatment of metastatic clear cell renal cell carcinoma;Serzan;J. Cancer Metastasis. Treat.,2021
5. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma;Motzer;N. Engl. J. Med.,2021
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献