Abstract
The liquid and gas diffusion layer is a key component of proton exchange membrane water electrolyzer (PEMWE), and its interfacial contact resistance (ICR) and corrosion resistance have a great impact on the performance and durability of PEMWE. In this work, a novel hybrid coating with Au contacts discontinuously embedded in a titanium oxidized layer was constructed on a Ti felt via facile electrochemical metallizing and followed by a pre-oxidization process. The physicochemical characterizations, such as scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction results confirmed that the distribution and morphology of the Au contacts could be regulated with the electrical pulse time, and a hybrid coating (Au-TiO2/Ti) was eventually achieved after the long-term stability test under anode environment. At the compaction force of 140 N cm−2, the ICR was reduced from 19.7 mΩ cm2 of the P-Ti to 4.2 mΩ cm2 of the Au-TiO2/Ti. The corrosion current density at 1.8 V (RHE) is 0.689 μA cm−2. Both the ICR and corrosion resistance results showed that the prepared protective coating could provide comparable ICR and corrosion resistance to a dense Au coating.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Communication Program for Young Scientist in USTB
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献