Removal of Lead by Merlinoite Prepared from Sugarcane Bagasse Ash and Kaolin: Synthesis, Isotherm, Kinetic, and Thermodynamic Studies

Author:

Chuenpratoom Tussaneetorn,Hemavibool KhuanjitORCID,Rermthong Kritsana,Nanan SuwatORCID

Abstract

This study introduces a merlinoite synthesized from sugarcane bagasse ash (SBA) and kaolin and evaluates its application as an adsorbent to remove lead from wastewater. The synthesis was performed via the hydrothermal method, and optimal conditions were determined. The adsorption of Pb by merlinoite was also optimized. Determination of the Pb2+ remaining in the aqueous solution was determined by atomic absorption spectroscopy (AAS). Adsorption isotherms were mainly studied using the Langmuir and Freundlich models. The Langmuir model showed the highest consistency for Pb adsorption on merlinoite, yielding a high correlation coefficient (R2) of 0.9997 and a maximum adsorption capacity (qmax) of 322.58 mg/g. The kinetics of the adsorption process were best described by a pseudo-second-order model. Thermodynamic studies carried out at different temperatures established that the adsorption reaction was spontaneous and endothermic. The results of this study show that merlinoite synthesized from kaolinite and SBA is an excellent candidate for utilization as a high-performance adsorbent for lead removal from wastewater.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3