Author:
Molepo Mmahiine,Ayeleso Ademola,Nyakudya Trevor,Erlwanger Kennedy,Mukwevho Emmanuel
Abstract
Metabolic syndrome, a cluster of different disorders which include diabetes, obesity and cardiovascular diseases, is a global epidemic that is growing at an alarming rate. The origins of disease can be traced back to early developmental stages of life. This has increased mortalities and continues to reduce life expectancies of individuals across the globe. The aim of this study was to investigate the sub-acute and long term effects of neonatal oral administration of oleanolic acid and metformin on lipids (free fatty acids, FFAs) and genes associated with lipid metabolism and glucose transport using a neonatal rat experimental model. In the first study, seven days old pups were randomly grouped into control—distilled water (DW); oleanolic acid (60 mg/kg), metformin (500 mg/kg), high fructose diet (20% w/v, HF), oleanolic acid (OA) + high fructose diet (OA + HF), and Metformin + high fructose diet (MET + HF) groups. The pups were treated for 7 days, and then terminated on postnatal day (PD) 14. In the second study, rat pups were initially treated similarly to study 1 and weaned onto normal rat chow and plain drinking water on PD 21 till they reached adulthood (PD112). Tissue and blood samples were collected for further analyses. Measurement of the levels of free fatty acids (FFAs) was done using gas chromatography-mass spectrometry. Quantitative polymerase chain reaction (qPCR) was used to analyze the gene expression of glut-4, glut-5, fas, acc-1, nrf-1 and cpt-1 in the skeletal muscle. The results showed that HF accelerated accumulation of saturated FFAs within skeletal muscles. The HF fed neonatal rats had increased stearic acid, which was associated with decreased glucose, suppressed expression of glut-4, glut-5, nrf-1 and cpt-1 genes, and increased expression of acc-1 (p < 0.01) and fas. OA + HF and MET + HF treated groups had increased mono- and polyunsaturated FFAs; oleic, and octadecadienoic acids than the HF group. These unsaturated FFAs were associated with increased glut-4, glut-5 and nrf-1 (p < 0.01) and decreased acc-1 and fas (p < 0.05) in both OA + HF and MET + HF treated groups. Conclusions: The present study shows that neonatal oral administration of oleanolic acid and metformin potentially protects against the development of fructose-induced metabolic dysfunction in the rats in both short and long time periods.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science