Abstract
A new solid-phase extraction (SPE) method for the extraction, enrichment, and analysis of eight polybrominated diphenyl ethers (PBDEs) in water was developed. The current approach involves using a cross-linked starch-based polymer as an extraction adsorbent and determining the PBDE analytes of interest using gas chromatography-mass spectrometry in negative chemical ionization mode (GC-NCI-MS). The starch-based polymer was synthesized by the reaction of soluble starch with 4,4′-methylene-bis-phenyldiisocyanate as a cross-linking agent in dry dimethylformamide. Various parameters impacting extraction efficiencies, such as adsorbent quantity, sample volumes, elution solvents and volumes, and methanol content, were carefully optimized. The 500 mg of starch-based polymer as an adsorbent used to extract 1000 mL of spiked water, presented high extraction recoveries of eight PBDEs. The linearity of the extraction process was investigated in the range of 1–200 ng L−1 for BDE-28, 47, 99, 100, and 5–200 ng L−1 for BDE-153, 154, 183, and 209, with coefficients of determination (r2) exceeding 0.990 for all PBDEs. The limits of detection (LODs) ranged from 0.06 to 1.42 ng L−1 (S/N = 3) and the relative standard deviation values (RSD) were between 3.6 and 9.5 percent (n = 5) under optimum conditions. The method was successfully used to analyze river and lake water samples, where it exhibited acceptable recovery values of 71.3 to 104.2%. Considering the excellent analytical performance and comparative cost advantage, we recommend the developed starch-based SPE method for routine extraction and analysis of PBDEs in water media.
Funder
The World Academy of Sciences
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science