Abstract
Textile reinforced concrete (TRC) has gained attention from the construction industry due to several characteristics such as its lightweight, high tensile strength, design flexibility, corrosion resistance and remarkably long service life. Some structural applications that utilize TRC components include precast panels, structural repairs, waterproofing elements and façades. TRC is produced by incorporating textile fabrics into thin cementitious concrete panels. However, in order to use this strengthening method in construction practice, a design model is required. Investigating the combined effect of conventional steel and textile reinforcement on the ductility behavior of composite TRC/RC one-way slab is vitally important. Therefore, the current study describes the proper methods of calculating the ductility of the composite concrete reinforced by a direct combination of conventional steel and textile reinforcement. Four methods are presented to calculate the ductility of the three considered one-way slab specimens. The three slabs having dimensions 1500 mm × 500 mm × 50 mm were reinforced by steel bars (SRC), by steel with one layer of carbon fabric (SRC + 1T), and by steel with two layers of carbon fabric (SRC + 2T). The three slab specimens were cast by the hand lay-up method, removed from the molds, cured, and then tested in flexure after 28 days using the four-point bending method. The obtained results and calculations revealed the non-reasonability of using the conventional method based on yielding of steel reinforcement as the only criterion in the ductility determination. The results also confirmed the suitability of using the energy-based method over other discussed methods in the calculation of the ductility for the hybrid reinforced members.
Funder
Dr Mohanad Muayad Sabri Sabri
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献