Is It Possible to Restrain OER on Simple Carbon Electrodes to Efficiently Electrooxidize Organic Pollutants?

Author:

Ječmenica Dučić Marija,Aćimović DankaORCID,Savić BranislavaORCID,Rakočević Lazar,Simić Marija,Brdarić TanjaORCID,Vasić Anićijević DraganaORCID

Abstract

This paper presents a comparative analysis of three carbon-based electrodes: bare multiwalled carbon nanotubes (MWCNT), SnO2/MWCNT, and PbO2/graphene-nanoribbons (PbO2/GNR) composites, as anodes for the electrooxidative degradation of Rhodamine B as a model organic pollutant. Anodic electrooxidation of Rhodamine B was performed on all three electrodes, and the decolorization efficiency was found to increase in the order MWCNT < PbO2/GNR < SnO2/MWCNT. The electrodes were characterized by X-ray photoelectron spectroscopy (XPS) and linear sweep voltammetry (LSV). It was proposed that, in the 0.1 M Na2SO4 applied as electrolyte, observed decolorization mainly occurs in the interaction of Rhodamine B with OH radical adsorbed on the anode. Finally, the obtained results were complemented with Density Functional Theory (DFT) calculations of OH-radical interaction with appropriate model surfaces: graphene(0001), SnO2(001), and PbO2(001). It was found that the stabilization of adsorbed OH-radical on metal oxide spots (SnO2 or PbO2) compared to carbon is responsible for the improved efficiency of composites in the degradation of Rhodamine B. The observed ability of metal oxides to improve the electrooxidative potential of carbon towards organic compounds can be useful in the future design of appropriate anodes.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3