Selective Solid–Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions

Author:

Chen Ya-Zhi1ORCID,He Ying-Chun12,Yan Li3,Zhao Wei1ORCID,Wu Biao1

Affiliation:

1. Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

2. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China

3. Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China

Abstract

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract Li2SO4 solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li+ extraction selectivity at 2-fold over Na+ and 12.5-fold over K+. The driving force underpinning selective lithium extraction is due to the combined interactions of Li+-SO42− electrostatics and the ion–dipole interaction of the lithium–receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3