Excited-State Polarizabilities: A Combined Density Functional Theory and Information-Theoretic Approach Study

Author:

Zhao Dongbo1ORCID,He Xin2,Ayers Paul W.3ORCID,Liu Shubin45ORCID

Affiliation:

1. Institute of Biomedical Research, Yunnan University, Kunming 650500, China

2. Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China

3. Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada

4. Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA

5. Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA

Abstract

Accurate and efficient determination of excited-state polarizabilities (α) is an open problem both experimentally and computationally. Following our previous work, (Phys. Chem. Chem. Phys. 2023, 25, 2131−2141), in which we employed simple ground-state (S0) density-related functions from the information-theoretic approach (ITA) to accurately and efficiently evaluate the macromolecular polarizabilities, in this work we aimed to predict the lowest excited-state (S1) polarizabilities. The philosophy is to use density-based functions to depict excited-state polarizabilities. As a proof-of-principle application, employing 2-(2′-hydroxyphenyl)benzimidazole (HBI), its substituents, and some other commonly used ESIPT (excited-state intramolecular proton transfer) fluorophores as model systems, we verified that either with S0 or S1 densities as an input, ITA quantities can be strongly correlated with the excited-state polarizabilities. When transition densities are considered, both S0 and S1 polarizabilities are in good relationships with some ITA quantities. The transferability of the linear regression model is further verified for a series of molecules with little or no similarity to those molecules in the training set. Furthermore, the excitation energies can be predicted based on multivariant linear regression equations of ITA quantities. This study also found that the nature of both the ground-state and excited-state polarizabilities of these species are due to the spatial delocalization of the electron density.

Funder

Yunnan University

NSERC

Canada Research Chairs

Digital Research Alliance of Canada

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3