Tetrel-Bond Interactions Involving Metallylenes TH2 (T = Si, Ge, Sn, Pb): Dual Binding Behavior

Author:

Chen Yishan1ORCID,Yao Lifeng1,Wang Fan1

Affiliation:

1. School of Chemistry & Environmental Science, Qujing Normal University, Qujing 655011, China

Abstract

The dual binding behavior of the metallylenes TH2 (T = Si, Ge, Sn, Pb) with some selected Lewis acids (T’H3F, T’ = Si, Ge, Sn, Pb) and bases (N2, HCN, CO, and C6H6) has been investigated by using the high-level quantum chemical method. Two types (type-A and type-B) of tetrel-bonded complexes can be formed for TH2 due to their ambiphilic character. TH2 act as Lewis bases in type-A complexes, and they act as Lewis acids in type-B ones. CO exhibits two binding modes in the type-B complexes, one of which is TH2···CO and the other is TH2···OC. The TH2···OC complexes possess a weaker binding strength than the other type-B complexes. The TH2···OC complexes are referred to as the type-B2 complexes, and the other type-B complexes are referred to as the type-B1 complexes. The type-A complexes exhibit a relatively weak binding strength with Eint (interaction energy) values ranging from –7.11 to –15.55 kJ/mol, and the type-B complexes have a broad range of Eint values ranging from −9.45 to −98.44 kJ/mol. The Eint values of the type-A and type-B1 complexes go in the order SiH2 > GeH2 > SnH2 > PbH2. The AIM (atoms in molecules) analysis suggests that the tetrel bonds in type-A complexes are purely closed-shell interactions, and those in most type-B1 complexes have a partially covalent character. The EDA (Energy decomposition analysis) results indicate that the contribution values of the three energy terms go in the order electrostatic > dispersion > induction for the type-A and type-B2 complexes, and this order is electrostatic > induction > dispersion for the type-B1 complexes.

Funder

Scientific Research Funds from the Educational Department of Yunnan Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3