Investigations into the Antifungal, Photocatalytic, and Physicochemical Properties of Sol-Gel-Produced Tin Dioxide Nanoparticles

Author:

Haq SirajulORCID,Shahzad Nadia,Shahzad Muhammad Imran,Elmnasri Khaled,Ali Manel Ben,Baazeem AlaaORCID,Hedfi AmorORCID,Ehsan Rimsha

Abstract

Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) spectroscopy were applied to evaluate the tin dioxide nanoparticles (SnO2 NPs) amalgamated by the sol-gel process. XRD was used to examine the tetragonal-shaped crystallite with an average size of 26.95 (±1) nm, whereas the average particle size estimated from the TEM micrograph is 20.59 (±2) nm. A dose-dependent antifun3al activity was performed against two fungal species, and the activity was observed to be increased with an increase in the concentration of SnO2 NPs. The photocatalytic activity of SnO2 NPs in aqueous media was tested using Rhodamine 6G (Rh-6G) under solar light illumination. The Rh-6G was degraded at a rate of 0.96 × 10−2 min for a total of 94.18 percent in 350 min.

Funder

Taif University Researchers Supporting Project, Taif University, Taif, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3