Abstract
The use of rare earth elements is a growing trend in diverse industrial activities, leading to the need for eco-friendly approaches to their efficient recovery and reuse. The aim of this work is the development of an environmentally friendly and competitive technology for the recovery of those elements from wastewater. Kinetic and equilibria batch assays were performed with zeolite, with and without bacterial biofilm, to entrap rare earth ions from aqueous solution. Continuous assays were also performed in column setups. Over 90% removal of lanthanum and cerium was achieved using zeolite as sorbent, with and without biofilm, decreasing to 70% and 80%, respectively, when suspended Bacillus cereus was used. Desorption from the zeolite reached over 60%, regardless of the tested conditions. When in continuous flow in columns, the removal yield was similar for all of the rare earth elements tested. Lanthanum and cerium were the elements most easily removed by all tested sorbents when tested in single- or multi-solute solutions, in batch and column assays. Rare earth removal from wastewater in open setups is possible, as well as their recovery by desorption processes, allowing a continuous mode of operation.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献