Abstract
Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process and to design optimized catalysts for the benchmark (E)-N-(1-phenylethylidene)aniline. The best results have been obtained with the amide derived from 4-methoxyaniline and the N-pivaloyl protected proline, for which the catalyzed process is almost 600 times faster than the uncatalyzed one. Mechanistic studies reveal that the formation of the component supramolecular complex catalyst-HSiCl3-substrate, involving hydrogen bonding breaking and costly conformational changes in the prolinamide, is an important step in the overall process.
Funder
Ministry of Economy, Industry and Competitiveness
Generalitat Valenciana
PLA DE PROMOCIÓ DE LA INVESTIGACIÓ DE LA UNIVERSITAT JAUME I
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献